
http://www.cambridge.org/9780521791427

The Standard ML Basis Manual

This book provides a description of the Standard ML (SML) Basis Library, the standard
library for the SML language. For programmers using SML, it provides a complete
description of the modules, types, and functions comprising the library, which is supported
by all conforming implementations of the language. The book serves as a programmer’s
reference, providing manual pages with concise descriptions. In addition, it presents
the principles and rationales used in designing the library and relates these to idioms and
examples for using the library. A particular emphasis of the library is to encourage the use
of SML in serious system programming. Major features of the library include I/O, a large
collection of primitive types, support for internationalization, and a portable operating
system interface.

This manual will be an indispensable reference for students, professional programmers,
and language designers.

Emden R. Gansner is a Principal Technical Staff Member at AT&T Laboratories. Having
taught at several prestigious universities, he is currently an adjunct Professor of Com-
puter Science at Stevens Institute of Technology. He has published articles in numerous
journals, such as the Journal of Combinatorial Theory, Discrete Mathematics, and SIAM
Journal of Algorithms and Discrete Methods. He also jointly received a patent on a
technique for drawing directed graphs.

John H. Reppy is an Associate Professor of Computer Science at the University of
Chicago. He recently served as Associate Editor of ACM TOPLAS and is the author
of Concurrent Programming in ML, also published by Cambridge University Press.

The Standard ML Basis Manual

Edited by

Emden R. Gansner
AT&T Laboratories

John H. Reppy
University of Chicago

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-79142-7

isbn-13 978-0-521-79478-7

isbn-13 978-0-511-19570-9

© AT&T Corporation and Lucent Technologies Inc. 2004

2004

Information on this title: www.cambridge.org/9780521791427

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-19570-2

isbn-10 0-521-79142-1

isbn-10 0-521-79478-1

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521791427

Contents

Foreword by Robin Milner page ix

Preface xi
Overview of the book xii
Contributors xiii
Acknowledgments xiii

1 Introduction 1
1.1 Design rules and conventions 2
1.2 Documentation conventions 7

2 Library modules 11
2.1 Required modules 11
2.2 Optional modules 12

3 Top-level environment 19
3.1 Modules in the top-level environment 19
3.2 Top-level type, exception, and value identifiers 19
3.3 Overloaded identifiers 22
3.4 Infix identifiers 23
3.5 The process environment 23

4 General usages 25
4.1 Linear ordering 26
4.2 Option 27
4.3 Exception handling 29
4.4 Miscellaneous functions 30

vi Contents

5 Text 33
5.1 Characters 33
5.2 Strings and substrings 34
5.3 Conversions to and from text 34
5.4 Taking strings apart 38

6 Numerics 43
6.1 Numerical conversions 43
6.2 Floating-point numbers 45
6.3 Packed data 47

7 Sequential data 51
7.1 Common patterns 51
7.2 Lists 56
7.3 Array modification 57
7.4 Subsequences and slices 57
7.5 Operating on pairs of lists 58
7.6 Two-dimensional arrays 59

8 Input/Output 61
8.1 The I/O model 61
8.2 Using the I/O subsystem 65

9 Systems programming 81
9.1 Portable systems programming 81
9.2 Operating-system specific programming 90

10 Network programming with sockets 99
10.1 Overview 99
10.2 Socket addresses 101
10.3 Internet-domain stream sockets 101
10.4 Internet-domain datagram sockets 104
10.5 Unix-domain sockets 105
10.6 Advanced topics 106

11 Manual pages 111
11.1 The Array structure 112
11.2 The Array2 structure 116
11.3 The ArraySlice structure 122
11.4 The BinIO structure 127
11.5 The BIT_FLAGS signature 129
11.6 The Bool structure 131
11.7 The Byte structure 133
11.8 The CHAR signature 135

Contents vii

11.9 The CommandLine structure 143
11.10 The Date structure 144
11.11 The General structure 149
11.12 The GenericSock structure 153
11.13 The IEEEReal structure 155
11.14 The IMPERATIVE_IO signature 158
11.15 The ImperativeIO functor 165
11.16 The INetSock structure 166
11.17 The INTEGER signature 169
11.18 The IntInf structure 174
11.19 The IO structure 177
11.20 The List structure 180
11.21 The ListPair structure 185
11.22 The MATH signature 189
11.23 The MONO_ARRAY signature 193
11.24 The MONO_ARRAY2 signature 199
11.25 The MONO_ARRAY_SLICE signature 205
11.26 The MONO_VECTOR signature 211
11.27 The MONO_VECTOR_SLICE signature 215
11.28 The NetHostDB structure 220
11.29 The NetProtDB structure 223
11.30 The NetServDB structure 225
11.31 The Option structure 227
11.32 The OS structure 229
11.33 The OS.FileSys structure 231
11.34 The OS.IO structure 237
11.35 The OS.Path structure 241
11.36 The OS.Process structure 250
11.37 The PACK_REAL signature 253
11.38 The PACK_WORD signature 255
11.39 The Posix structure 257
11.40 The Posix.Error structure 259
11.41 The Posix.FileSys structure 263
11.42 The Posix.IO structure 276
11.43 The Posix.ProcEnv structure 284
11.44 The Posix.Process structure 289
11.45 The Posix.Signal structure 294
11.46 The Posix.SysDB structure 296
11.47 The Posix.TTY structure 298
11.48 The PRIM_IO signature 308

viii Contents

11.49 The PrimIO functor 317
11.50 The REAL signature 318
11.51 The Socket structure 330
11.52 The STREAM_IO signature 346
11.53 The StreamIO functor 358
11.54 The STRING signature 360
11.55 The StringCvt structure 366
11.56 The SUBSTRING signature 372
11.57 The TEXT signature 380
11.58 The TEXT_IO signature 382
11.59 The TEXT_STREAM_IO signature 386
11.60 The Time structure 387
11.61 The Timer structure 391
11.62 The Unix structure 394
11.63 The UnixSock structure 398
11.64 The Vector structure 401
11.65 The VectorSlice structure 405
11.66 The Windows structure 409
11.67 The WORD signature 420

Bibliography 427

General index 429

SML identifier index 435

Raised exception index 465

Foreword

Of all modern programming languages, Standard ML has ascribed perhaps the highest
priority to rigorous semantic definition. It is therefore the preferred language for many
applications where rigor is important; this is notably true of tools for formal program anal-
ysis. It has also gained users who value its high degree of portability, a direct consequence
of the unambiguity of its definition.

Now Emden Gansner and John Reppy have equipped SML with another essential
ingredient: a library of signatures, structures, and functors which will greatly ease the
programmer’s task. The SML Basis Library has been long in gestation, but this has ensured
that it contains the right things. Only by close cooperation with users, over a considerable
period of time, can one be sure of consistency and balance in defining a library. We can
therefore be confident that the Basis Library will bring SML into still wider use, and
we owe warm thanks to its creators for undertaking an arduous task with skill, care, and
dedication.

Robin Milner
Cambridge, July 2003

Preface

One essential for the success of a general-purpose language is an accompanying standard
library that is rich enough and efficient enough to support the basic, day-to-day tasks
common to all programming. Libraries provide the vocabulary with which a language
can be used to say something about something. Without a broad common vocabulary, a
language community cannot prosper as it might.

This document presents a standard basis library for SML. It is a basis library in the
sense that it concerns itself with the fundamentals: primitive types such as integers and
floating-point numbers, operations requiring runtime system or compiler support, such
as I/O and arrays; and ubiquitous utility types such as booleans and lists. The SML
Basis Library purposefully does not cover higher-level types, such as collection types, or
application-oriented APIs, such as regular expression matching. The primary reason for
limiting the scope in this way is that the design space for these interfaces is large (e.g.
choosing between functors and polymorphism as a parameterization mechanism) and,
unlike the case with lists and arrays, we do not have many years of common practice to
guide the design. It is also the case that the SML Basis Library specification is a substantial
document and expanding its scope would make it unwieldy.

The primary purpose of this book is to serve as a reference manual for the Basis
Library, describing as clearly and completely as possible the types, values, and modules
making up the Library. This specification is designed to serve both implementors of the
SML Basis Library and users. While the specification is not formal, we have tried to
make it precise and complete enough to guarantee a high degree of portability between
implementations.

It is sometimes difficult to program from a reference manual; all the pieces are there
but it is not clear how they fit together. For the working programmer who wants to use
the Library, the book also discusses how the functions were meant to be used alone and
together. Although not a tutorial, the book should assist the programmer in understanding
and using the Library, clarifying when and how various structures should be used, and
making the apparent arcana accessible.

xiv PREFACE

There are certain roles the book does not attempt. As we’ve already noted, it is not a
textbook, for either the Library or SML. There are already many fine books and papers
teaching the joys of writing in SML, some of which address this Library as well. When
dealing with the Library’s interface to external software such as Unix or Windows, it
assumes the reader already knows how to use them or has access to sources providing
that information.

The Library is certainly not complete; there are some glaring omissions, such as a
module for handling regular expressions or guidelines for internalization. It is assumed
that, as needs are identified and consensus is reached on the design of a structure, new
modules will be added to the Library or be standardized as a separate library. The evolution
of the Library will be reflected in the online version of this document, the latest version
of which can be found at

http://standardml.org/Basis

Overview of the book

The book is organized in three main parts: an overview of the Library, its structure and
conventions; a tour of the main areas covered by the Library, providing programming
tips, idioms, and examples aimed at Library users; and a set of manual pages defining the
signatures and structures composing the Library.

The first three chapters form the first part. Chapter 1 presents the philosophy, princi-
ples, and rules concerning the design of the Library. It also notes the conventions used
in documenting the Library. The second chapter lists all of the signatures, structures,
and functions in the Library, noting their connections and whether they are optional.
Chapter 3 considers those parts of the Library that are available at the top level, outside
of any structure.

The following chapters describe some of the component areas, such as I/O and text
handling, in more depth. These chapters discuss the common themes connecting the
modules of a component, and note related assumptions and restrictions. The Library
includes some elegant solutions to certain programming tasks, but these are not necessarily
obvious from a bare presentation of the signatures. Thus, many of these chapters include
short tutorial sections that discuss how various types and functions were intended to be
used, including examples of idiomatic use.

Chapter 11 is the meat of the book, containing manual pages describing the signatures,
structures, and functors specified by the Library, and their semantics. The modules are
presented in alphabetical order. Generic modules, those with multiple possible implemen-
tations, are gathered under their defining signature. Thus, the Char structure is discussed
in the CHAR section. Each non-generic module, those with a unique implementation, such
as Timer, heads its own section shared with its signature. Significant substructures, for
example, Posix.IO also rate their own sections.

PREFACE xv

During the design of the Library, the authors of the SML language have revised its
definition [MTHM97], partly in response to the needs of the Library. The appendix
describes some of the changes that have taken place in the SML language, especially
in relation to the Library, and also notes where the Library differs from the initial basis
described in the original SML definition. The back matter also provides an index of the
exceptions defined in the Library.

Contributors

The main architects of the SML Basis Library are Andrew Appel, Dave Berry, Emden
Gansner, John Reppy, and Peter Sestoft. In addition, the following people contributed to
the design discussions and writing: Nick Barnes, Lal George, Lorenz Huelsbergen, David
MacQueen, Dave Matthews, Carsten Müller, Larry Paulson, Riccardo Pucella, and Jon
Thackray. This document is edited and maintained by Emden Gansner and John Reppy.

Acknowledgments

As usual in a work like this, many people have been involved in the process. We had helpful
comments on the Library or this document from Peter Michael Bertelsen, Matthias Blume,
Jeremy Dawson, Matthew Fluet, Elsa Gunter, Ken Larsen, Peter Lee, Neophytos Michael,
Kevin Mitchell, Brian Monahan, Stefan Monnier, Chris Okasaki, Andreas Rossberg, Jon
Thackray, Mads Tofte, Dan Wang, and Stephen Weeks. David Gay and Serban Jora helped
with insights and pointers concerning IEEE floating-point numbers and the Windows
operating system, respectively. We would especially like to thank our editor at Cambridge
University Press, Lauren Cowles, whose patience has been unbounded.

This document was written using the ML-Doc toolkit, which is an SGML-based system
for documenting SML interfaces. More information about ML-Doc can be found at

http://people.cs.uchicago.edu/˜jhr/tools/ml-doc.html

1
Introduction

This document describes the Standard ML Basis Library. The Library provides an ex-
tensive collection of basic types and functions for the Standard ML (SML) language,
as described by the Definition of Standard ML (Revised) [MTHM97]. The goals of the
Basis library are to:

• serve as the basic toolkit for the SML programmer, whether novice or profes-
sional;

• focus attention on the attractiveness of SML as a language for programming in a
wide variety of domains, e.g., systems programming;

• replace the many incompatible general-purpose libraries currently available.

The original definition of the Standard ML language [MTH90] was published in 1990,
for which reason we refer to it as SML’90. The Definition specified an initial basis, i.e.,
a set of primitive types such as int and string along with some related operations,
which was used to define various derived forms and special constants. Though adequate
for the purpose of language specification, it was too limited for programming applica-
tions. In response, most implementations of the language extended the basis with large
collections of generic libraries. With the libraries coming from different sources, they
tended to be incompatible, even when implementing the same abstract types and func-
tions. The result was that, despite the standardization of the language, any significant
SML program could be compiled on multiple implementations only if the programmer
were willing to provide portable libraries that relied only on the initial basis.
The SML Basis Library is a rich collection of general-purpose modules, which can

serve as the foundation for applications programming or for more domain-specific li-
braries. It provides most of the basic types and operations expected by a working
programmer and specifies that anyone using SML can expect to find them in any im-
plementation.

2 CHAPTER 1. INTRODUCTION

Some goals in designing the Library worked toward its expansion. One, suggested
above, was the desire for the Library to be “complete enough.” If using a type provided
by the Library, the programmer should be able to look in the defining structure and find
the right function or, at least, the functions needed to build the desired function easily.
In addition, the Library attempts to provide similar functions in similar contexts. Thus,
the traditional app function for lists, which applies a function to each member of a list,
has also been provided for arrays and vectors.
An opposite design force has been the desire to keep the Basis library small. In gen-

eral, a function has been included only if it has clear or proven utility, with additional
emphasis on those that are complicated to implement, require compiler or runtime sys-
tem support, or are more concise or efficient than an equivalent combination of other
functions. Some exceptions were made for historical reasons or for perceived user con-
venience.
The SML language has the rare property of being a practical, general-purpose pro-

gramming language possessing a well-defined, indeed formal, semantics. Following
in this spirit, some SML-based libraries, e.g., CML [Rep99], build on this precision by
supplying their own formal semantics. Although we viewed this goal as beyond what we
could provide for the Basis library, we still felt very strongly that the functions included
here should be defined as precisely and clearly as possible. In some cases, we have
defined the meaning of basis functions via reference implementations. We want SML
programs to be deterministic (aside from their interaction with the external world), and
so we specify the traversal order for higher-level functions such as List.map. The
description of a function provides the dynamic constraints on the arguments, such as
that an integer index into an array must be less than the length of the array, and relates
what happens when a function invocation violates these constraints, typically the raising
of a particular exception. We have tried to stipulate completely the format of return val-
ues, so that, when a type’s representation is visible, the programmer will know what to
expect concretely, not just abstractly. We have avoided unspecified or implementation-
dependent results whenever possible. Some functions were excluded from the Library
because we could not provide a clean specification for the function’s behavior.

1.1 Design rules and conventions

In designing the Library, we have tried to follow a set of stylistic rules to make library
usage consistent and predictable, and to preclude certain errors. These rules are not
meant to be prescriptive for the programmer using or extending the Library. On the
other hand, although the Library itself flouts the conventions on occasion, we feel the
rules are reasonable and helpful and would encourage their use.

1.1. DESIGN RULES AND CONVENTIONS 3

1.1.1 Orthographic conventions

We use the following set of spelling and capitalization conventions. Some of these con-
ventions, e.g., the capitalization of value constructors, seem to be widely accepted in the
user community. Other decisions were based less on a dominant style or a compelling
reason than on compromise and the need for consistency and some sense of good taste.
The conventions we use are

• Alphanumeric value identifiers are in mixed-case, with a leading lowercase letter;
e.g., map and openIn.

• Type identifiers are all lowercase, with words separated by underscores; e.g.,
word and file_desc.

• Signature identifiers are in all capitals, with words separated by underscores; e.g.,
PACK_WORD and OS_PATH. We refer to this convention as the signature conven-
tion.

• Structure and functor identifiers are in mixed-case, with initial letters of words
capitalized; e.g., General and WideChar. We refer to this convention as the
structure convention.

• Alphanumeric datatype constructors follow the signature convention; e.g., SOME,
A_READ, and FOLLOW_ALL. In certain cases, where external usage or aesthetics
dictates otherwise, the structure convention can be used. Within the Basis library,
the only use of the latter convention occurs with the months and weekdays in
Date, e.g., Jan and Mon. The only exceptions to these rules are the identifiers
nil, true, and false, where we bow to tradition.

• Exception identifiers follow the structure convention; e.g., Domain and SysErr.

These conventions concerning variable and constructor names, if followed consistently,
can be used by a compiler to aid in detecting the subtle error in which a constructor is
misspelled in a pattern-match and is thus treated as a variable binding. Some implemen-
tations may provide the option of enforcing these conventions by generating warning
messages.

1.1.2 Naming

Similar values should have similar names, with similar type shapes, following the con-
ventions outlined above. For example, the function Array.app has the type:

val app : (’a -> unit) -> ’a array -> unit

