


Beginning	jQuery

Jack	Franklin

2



Beginning	jQuery

Copyright	©	2013	by	Jack	Franklin
This	work	is	subject	to	copyright.	All	rights	are	reserved	by	the	Publisher,	whether	the	whole	or	part	of
the	material	is	concerned,	specifically	the	rights	of	translation,	reprinting,	reuse	of	illustrations,	recitation,
broadcasting,	reproduction	on	microfilms	or	in	any	other	physical	way,	and	transmission	or	information
storage	and	retrieval,	electronic	adaptation,	computer	software,	or	by	similar	or	dissimilar	methodology
now	known	or	hereafter	developed.	Exempted	from	this	legal	reservation	are	brief	excerpts	in	connection
with	reviews	or	scholarly	analysis	or	material	supplied	specifically	for	the	purpose	of	being	entered	and
executed	on	a	computer	system,	for	exclusive	use	by	the	purchaser	of	the	work.	Duplication	of	this
publication	or	parts	thereof	is	permitted	only	under	the	provisions	of	the	Copyright	Law	of	the	Publisher’s
location,	in	its	current	version,	and	permission	for	use	must	always	be	obtained	from	Springer.
Permissions	for	use	may	be	obtained	through	RightsLink	at	the	Copyright	Clearance	Center.	Violations
are	liable	to	prosecution	under	the	respective	Copyright	Law.

ISBN-13	(pbk):	978-1-4302-4932-0
ISBN-13	(electronic):	978-1-4302-4933-7
Trademarked	names,	logos,	and	images	may	appear	in	this	book.	Rather	than	use	a	trademark	symbol
with	every	occurrence	of	a	trademarked	name,	logo,	or	image	we	use	the	names,	logos,	and	images	only
in	an	editorial	fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the
trademark.

The	use	in	this	publication	of	trade	names,	trademarks,	service	marks,	and	similar	terms,	even	if	they	are
not	identified	as	such,	is	not	to	be	taken	as	an	expression	of	opinion	as	to	whether	or	not	they	are	subject
to	proprietary	rights.
While	the	advice	and	information	in	this	book	are	believed	to	be	true	and	accurate	at	the	date	of
publication,	neither	the	authors	nor	the	editors	nor	the	publisher	can	accept	any	legal	responsibility	for
any	errors	or	omissions	that	may	be	made.	The	publisher	makes	no	warranty,	express	or	implied,	with
respect	to	the	material	contained	herein.

President	and	Publisher:	Paul	Manning
Lead	Editor:	Louise	Corrigan
Technical	Reviewer:	Ian	Devlin
Editorial	Board:	Steve	Anglin,	Mark	Beckner,	Ewan	Buckingham,	Gary	Cornell,	Louise

Corrigan,	Morgan	Ertel,	Jonathan	Gennick,	Jonathan	Hassell,	Robert	Hutchinson,	Michelle
Lowman,	James	Markham,	Matthew	Moodie,	Jeff	Olson,	Jeffrey	Pepper,	Douglas	Pundick,
Ben	Renow-Clarke,	Dominic	Shakeshaft,	Gwenan	Spearing,	Matt	Wade,	Tom	Welsh

Coordinating	Editor:	Mark	Powers
Copy	Editor:	Kimberly	Burton-Weisman
Compositor:	SPi	Global
Indexer:	SPi	Global
Artist:	SPi	Global
Cover	Designer:	Anna	Ishchenko

Distributed	to	the	book	trade	worldwide	by	Springer	Science+Business	Media	New	York,	233	Spring
Street,	6th	Floor,	New	York,	NY	10013.	Phone	1-800-SPRINGER,	fax	(201)	348-4505,	e-mail
orders-ny@springer-sbm.com,	or	visit	www.springeronline.com.
Apress	Media,	LLC	is	a	California	LLC	and	the	sole	member	(owner)	is	Springer	Science	+	Business
Media	Finance	Inc	(SSBM	Finance	Inc).	SSBM	Finance	Inc	is	a	Delaware	corporation.

For	information	on	translations,	please	e-mail	rights@apress.com,	or	visit
www.apress.com.

Apress	and	friends	of	ED	books	may	be	purchased	in	bulk	for	academic,	corporate,	or	promotional	use.
eBook	versions	and	licenses	are	also	available	for	most	titles.	For	more	information,	reference	our	Special
Bulk	Sales–eBook	Licensing	web	page	at	www.apress.com/bulk-sales.

Any	source	code	or	other	supplementary	materials	referenced	by	the	author	in	this	text	is	available	to
readers	at	www.apress.com/9781430249320.	For	detailed	information	about	how	to

3

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781430249320


locate	your	book’s	source	code,	go	to	www.apress.com/source-code/.

4

http://www.apress.com/source-code/


Dedicated	to	Mum,	Dad	and	Sam

5



Contents	at	a	Glance

	Foreword

	About	the	Author

	About	the	Technical	Reviewer

	Acknowledgments

	Chapter	1:	JavaScript	You	Need	to	Know

	Chapter	2:	The	Basics	of	jQuery

	Chapter	3:	Traversing	the	DOM

	Chapter	4:	DOM	Manipulation	with	jQuery

	Chapter	5:	An	Introduction	to	Events

	Chapter	6:	More	Events

	Chapter	7:	Animation

	Chapter	8:	Ajax	with	jQuery

	Chapter	9:	Writing	a	jQuery	Plug-in

	Chapter	10:	More	jQuery	Plug-ins

	Chapter	11:	A	jQuery	Image	Slider

		Index

6



Contents

Foreword

About	the	Author

About	the	Technical	Reviewer

Acknowledgments

	Chapter	1:	JavaScript	You	Need	to	Know
Using	JavaScript	on	a	Web	Page
Syntax	Conventions

Comments

Variables
Types

Functions
Functions	Returning	Values

Conditionals
Debugging	with	the	Console
Arrays
Loops

More	console.log(	)
Summary

	Chapter	2:	The	Basics	of	jQuery
The	Document	Object	Model	(DOM)
Downloading	jQuery
The	jQuery	API	Documentation
Writing	Some	jQuery

Animation	Example

Summary

7



	Chapter	3:	Traversing	the	DOM
CSS	Selectors	in	jQuery
Traversal	Methods
Further	Traversal
Chaining	Methods
Further	Filtering

Summary

	Chapter	4:	DOM	Manipulation	with	jQuery
CSS
animate(	)	and	Animation	Convenience	Methods
Attributes	and	Properties
text(	)	and	html(	)
Removing	Elements	from	the	DOM
Creating	New	Elements
Inserting	into	the	DOM

DOM	Insertion,	Around
DOM	Insertion,	Inside
DOM	Insertion,	Outside

Efficient	DOM	Insertion
Summary

	Chapter	5:	An	Introduction	to	Events
Popular	Events
Interacting	with	the	Element
Triggering	Events

Unbinding	from	Events
The	Event	Object
Building	an	Accordion
Summary

	Chapter	6:	More	Events

8



Event	Delegation
Event	Propagation

When	Should	I	Worry	About	Event	Propagation?

Preventing	Default	Behavior
A	Note	on	return	false;

Your	Own	Events
The	Accordion,	Take	2
Summary

	Chapter	7:	Animation
The	animate(	)	Method

Basic	Usage
Easing

Passing	in	Two	Objects
Animation	Shortcuts

More	Convenience	Methods
Fading
Sliding
Sliding	and	Fading

The	Animation	Queue
A	Common	Problem

Fixing	Your	Accordion
The	Image	Slider
Summary

	Chapter	8:	Ajax	with	jQuery
JSON
Parsing	JSON	in	JavaScript
Ajax	with	jQuery

Setting	Up	a	Local	Development	Server

A	Real	API:	Dribbble
Summary

9



	Chapter	9:	Writing	a	jQuery	Plug-in
Why	a	Plug-in?
Your	First	jQuery	Plug-in
Improvements
Immediately-Invoked	Function	Expressions
Giving	the	User	Options

Adding	Options	to	Your	Plug-ins
The	Accordion	Plug-in
Adding	Callback	Support
Summary

	Chapter	10:	More	jQuery	Plug-ins
The	Dribbble	API	Plug-in
The	getShots	method
Improving	getShots
Minifying	Your	Code
More	Refactoring

Documentation
Summary

	Chapter	11:	A	jQuery	Image	Slider
Plan	of	Attack
Project	Setup
Plug-in	Setup

Animating	the	Slider

Infinitely	Looping
Catch	Up
Keeping	Track

Keyboard	Support
Automatic	Animation
Bug	Fixing

10



Summary
Conclusion

Index

11



Foreword

I’m	a	Christian,	I	love	my	family,	I	work	for	appendTo,	and	I	love	to	learn!	I	think
Jack	and	I	share	the	common	desire	to	learn.

I	first	noticed	Jack	Franklin	when	he	launched	the	JavaScript	Playground	web	site.
I	watched	as	he	regularly	posted	many	relevant	topics	about	the	front-end	development
world.	I	then	saw	him	branch	out	and	experiment	with	server-side	JavaScript—
recording	and	sharing	screencasts,	speaking	at	conferences,	and	now	writing	this	book.

I	was	honored	when	he	contacted	me	to	write	the	foreword	for	his	book.	jQuery	has
come	a	long	way	since	2006.	There	have	been	many	books	written	about	it	and	I’m
certain	there	will	be	many	more	to	come.	The	thing	I	like	about	Jack	is	that	he	is	first
and	foremost	a	JavaScript	scholar.	As	your	read	through	his	book,	he	takes	special	care
to	introduce	his	readers	to	proper	JavaScript	concepts	in	order	to	shield	them	from
confusion	down	the	road.

jQuery	tends	to	be	an	easy	library	for	many	developers	and	designers	to	learn,	but
the	danger	comes	when	they	start	to	feel	friction	with	the	actual	JavaScript	language,
not	the	jQuery	library.	Jack	appreciates	this	friction	and	tries	to	alleviate	that
roadblock	for	his	readers.

Jack	gives	a	good	overview	of	the	main	topics	that	jQuery	covers	and	provides
numerous	code	examples	and	snippets	for	his	readers	to	grasp.	I	personally	find	that
the	technical	books	I	most	enjoy	reading	are	ones	that	have	code	sprinkled	here	and
there	so	that	I	can	fully	grasp	the	concepts	explained	in	the	prose.

jQuery	is	a	fast-evolving	library	and	new	versions	come	out	frequently.	As	a	result,
new	features	are	added	and	others	are	deprecated	from	version	to	version.	If	you	are
new	to	jQuery	or	need	a	quick	refresher,	this	book	will	navigate	you	toward	the
appropriate	API	methods	and	techniques	you’ll	need	to	become	proficient	with	the
jQuery	library.

Elijah	Manor
Senior	Architect	&	Trainer	for	appendTo

Microsoft	Regional	Director	&	Microsoft	ASP.NET	MVP

12



About	the	Author

Jack	Franklin	is	a	web	developer	and	computer	science	student	from	the	world
heritage	city	of	Bath,	in	the	UK.	He	started	creating	web	sites	in	2005	and	has
experience	in	a	number	of	web	languages,	including	HTML,	CSS,	PHP,	Ruby,	Python,
and	others,	although	his	focus	is	JavaScript.	He	runs	the	popular	online	resource
JavaScript	Playground	(http://javascriptplayground.com)	and	has
released	a	number	of	open-source	jQuery	plug-ins	online.

13

http://javascriptplayground.com


About	the	Technical	Reviewer

Ian	Devlin	is	an	Irish	web	and	app	developer	who	resides	in	Germany,	where	he
works	for	pixolith,	a	web	agency	in	Düsseldorf.	He	started	his	working	life	as	a
software	developer	mainly	using	C,	and	eventually	turned	his	attention	toward	web
technologies.	In	addition	to	writing	on	his	own	web	site	(www.iandevlin.com),
Ian	writes	for	HTML5	Doctor	and	.net	magazine,	curates	at	HTML5	Gallery,	and	has
written	for	Dev.Opera	and	PC	Pro.	He	has	also	written	a	book	called	HTML5
Multimedia	Develop	and	Design	(Peachpit	Press,	2011).	Outside	of	all	that,	he	loves
European	history	and	taking	walks	in	the	countryside.

14

http://www.iandevlin.com


Acknowledgments

I’ve	been	fortunate	to	have	so	many	people	help	me	along	my	journey	to	get	me	to	this
stage.

The	first	is	Richard	Quick,	who	first	got	me	hooked	on	the	web	when	I	attended	my
first	conference.	He	went	out	of	his	way	to	make	me	able	to	attend	and	I	got	home	late
that	evening	inspired,	knowing	it	was	a	path	I	wanted	to	venture	down.

Then	there’s	all	the	folks	who	I	got	to	know	when	I	moved	to	Bath,	who	gave	me
advice,	put	up	with	my	questions	and	were	always	willing	to	help.	People	like	Dan
Dineen,	Justin	Owen,	Jamie	Rumbelow,	Phil	Sturgeon,	Julian	Cheal	everyone	at	Storm
and	the	guys	at	Riot.	Thanks	to	Alex	Older	for	giving	me	my	first	speaking
opportunity	at	his	conference	in	Bristol	too.

Next	on	the	list	are	my	peers	at	University	who	put	up	with	me	being	incredibly
unsociable	whilst	I	stayed	in	coding:	Aaron,	Grant,	Dave,	James,	Ollie,	Cat,	Sophie,
Helen	and	loads	more.

The	opportunity	to	write	a	book	came	about	because	I	started	blogging,	and	a
crucial	part	of	that	was	Toby	Howarth,	who	kindly	donated	his	time	to	make	the	site
look	nice.	Thanks	to	the	people	who	helped	spread	my	articles	across	the	internet	and
gave	me	advice:	Stuart	Robson,	Elijah	Manor,	Anthony	Killeen,	Dan	Sheerman,	Addy
Osmani,	Sindre	Sorhus,	Rachel	Shillcock,	Adam	Onishi,	Michael	Heap	and	Peter
Cooper	to	name	but	a	few.

For	the	duration	of	writing	this	book,	I	had	just	started	working	for	Kainos,	who
were	incredibly	welcoming	and	supportive	of	me.	Thanks	to	everyone	there,	but	in
particular	to	Stuart	McKee,	Luke	McNeice,	Will	Hamill,	Michael	Allen,	Steven
Alexander,	James	Hughes	and	Tom	Gray.

I	was	also	lucky	to	meet	and	work	with	some	other	really	smart	people	through
work;	people	like	Tim	Paul,	Roo	Reynolds,	Tom	Loosemore,	Ben	Howdle	and	Alice
Newton.

Finally,	everyone	at	Apress	deserves	a	medal	for	putting	up	with	me,	and	the
barrage	of	questions	I	sent	their	way,	in	particular	Mark,	Louise	and	Ian.	Along	with
the	rest	of	the	Apress	team	they’ve	turned	my	mess	of	words	into	this	book	you’re
reading.

15



CHAPTER	1

JavaScript	You	Need	to	Know

jQuery	is	a	framework	that’s	built	on	top	of	JavaScript,	not	a	language	in	its	own	right.
It	is	possible	to	write	jQuery	with	barely	any	knowledge	of	JavaScript,	but	it’s	not
something	I	would	recommend.	If	you	want	to	be	able	to	confidently	write	jQuery
plug-ins	for	your	site,	or	alter	plug-ins	others	have	written,	you	need	to	be	familiar
with	basic	JavaScript.	This	is	why	I’m	starting	with	JavaScript	that	you	need	to	know.
This	chapter	will	cover:

JavaScript	scripts	on	a	web	page

Variables	and	objects	in	JavaScript

JavaScript	functions

Conditionals

Looping	over	arrays	and	objects

Debugging	JavaScript

If	you	are	familiar	with	JavaScript,	you	might	feel	like	skipping	this	chapter.	That’s
fine,	but	please	consider	skimming	it	first	to	ensure	that	you	are	comfortable	with
everything	covered.	Resist	the	temptation	to	skip	to	the	jQuery	parts—because	you
will	struggle	with	it.	Trust	me,	in	a	couple	of	chapters’	time,	this	will	all	seem	worth	it.
Many	developers	I’ve	helped	online	have	dived	into	jQuery	eagerly	before	becoming
stuck	due	to	a	lack	of	understanding	the	language	jQuery	is	built	on.	When	you’re
writing	jQuery,	you’re	writing	JavaScript,	but	using	the	jQuery	library.	I	cannot	stress
how	important	it	is	that	you	make	sure	the	content	covered	in	this	chapter	is	content
that	you	are	comfortable	with	before	moving	on.	I	suggest	that	you	try	out	the	code	as
you	go	through.	Don’t	fool	yourself	into	thinking	you	understand	it	because	you’ve
read	it;	there	is	no	substitute	for	typing	out	the	code	yourself.

To	run	the	code,	I	recommend	JS	Console	(www.jsconsole.com),	a	tool	by
Remy	Sharp	that	allows	you	to	execute	JavaScript	and	see	the	results.	You	can	enter
the	code	in	the	top	bar	and	hit	Enter	to	see	the	results.	This	is	really	useful	for	short
lines	of	code.	Figure	1-1	shows	an	example	of	JS	Console.

16

http://www.jsconsole.com


Figure	1-1.		Running	the	code	alert	(“Jack”)	and	viewing	the	results	on	JS	Console

For	larger	pieces	of	code,	it’s	best	to	set	up	an	index.html	page	and	include
your	JavaScript	file	in	there.	I’ll	explain	how	to	do	that	in	the	next	section	of	this
chapter.	Throughout	this	chapter,	I	will	often	use	the	alert	function	to	demonstrate	the
value	of	a	certain	variable.	This	is	purely	used	for	demonstration	of	concepts.	In	real
life	when	I	need	to	check	the	variable,	I	don’t	ever	use	alerts—I	use	a	browser’s
JavaScript	console.	The	reason	for	using	alerts	for	basic	examples	is	that	it’s	much
easier	to	get	started	with.	There’s	no	need	to	load	up	the	developer	tools,	which	take
time	to	get	accustomed	to.	Once	you	progress	into	more	complex	code,	you	will	spend
time	exploring	the	developer	tools.	At	the	end	of	this	chapter,	I’ll	show	you	exactly
how	I	do	that,	before	moving	on	to	jQuery.

Using	JavaScript	on	a	Web	Page
When	you	have	a	basic	web	page	and	wish	to	add	some	JavaScript	to	run,	you	have
two	options.	First,	you	can	add	your	code	inline,	within	a	script	tag,	like	so:

<script	type="text/javascript">

		//write	code	here

</script>

Or,	you	can	create	an	external	JavaScript	file	with	the	.js	file	extension	and	then
load	it	in,	again	through	the	script	tag:

<script	type="text/javascript"	src="path/to/your/file.js"></script>

Note	that	you	have	to	close	the	script	tag.	Even	though	there’s	nothing	between
it,	it’s	not	a	self-closing	tag.	Within	your	JS	file,	you	are	free	to	write	JavaScript.

Within	a	typical	HTML	file,	there	are	typically	two	places	people	use	to	load	their

17



external	JS	files.	The	first	is	within	the	head,	and	the	second	is	just	before	the	closing
</body>	tag.	In	the	past,	scripts	were	always	loaded	into	the	head	element,	but	with
performance	and	page	loading	speeds	more	critical	than	ever,	it’s	often	recommended
to	place	your	scripts	at	the	bottom	of	your	page.	This	is	an	approach	I	side	with,	too.

The	browser	renders	the	page	from	top	to	bottom,	and	when	it	comes	across	your
scripts,	it	pauses	rendering	the	page	to	load	in	your	JS.	Thus,	the	page	loads	slower	(or,
more	importantly,	feels	that	way	to	the	user)	because	the	rendering	is	blocked	by	your
loading	JavaScript	files.	Hence,	putting	the	scripts	just	before	the	closing	</body>
tag	means	that	when	the	time	comes	to	load	your	scripts,	the	rest	of	the	page	has	been
loaded.

Before	moving	on	to	looking	at	the	language	itself,	there’s	one	more	thing	I’d	like
to	note.	If	you’re	using	the	new	HTML5	doctype	(<!DOCTYPE	html>)	rather	than
one	of	its	more	long-winded	predecessors,	you	don’t	actually	need	to	define	the	type
attribute	on	your	script	tags.	Simply,

<script	src="path/to/your/file.js"></script>

is	enough.	This	does	not	cause	issues	in	older	browsers—neither	does	the	HTML5
doctype—and	I	highly	recommend	using	it.

Syntax	Conventions
JavaScript’s	syntax	is	pretty	basic	and	clear,	but	there	are	certain	subtleties	that	you
will	discover	on	the	way.	There’s	often	more	than	one	way	to	do	things,	but	the
community	has	certain	conventions	that	have	stuck	over	time.	One	convention	that	I
want	to	mention	straightaway	is	semicolons.	Often	in	JavaScript,	adding	a	semicolon
at	the	end	of	a	line	is	optional,	and	you	will	see	tutorials	that	don’t	do	it.	However,	the
convention	is	to	always	use	a	semicolon	at	the	end	of	a	line,	and	that’s	what	I’ll	be
following	here.	There	are	obviously	certain	circumstances	when	you	can’t	use	one,
and	you	will	see	those,	but	in	any	situation	where	a	semicolon	is	optional,	I’ll	use	one.
I	recommend	you	do,	too.

Another	consideration	to	make	is	for	white	space.	It	is	insignificant	in	JavaScript,
so	you	can	layout	code	the	way	you	like	in	terms	of	white	space.	Whenever	you	are
inside	a	set	of	braces,	you	should	indent	by	one	tab,	but	other	than	that,	you	will	find
yourself	adapting	your	own	standard.

Comments

Before	continuing,	at	this	stage	it’s	worth	discussing	comments.	JavaScript	allows	us
to	insert	comments.	This	is	content	that	will	be	ignored	and	not	treated	as	code,	so	you
can	put	anything	you	want	in	them.	It’s	useful	for	documenting	your	code.	There	are
two	syntaxes	for	comments—one	for	a	single	line	comment	and	one	for	a	multiline
comment:

18



//this	is	a	single	line	comment,	denoted	by	two	forward	slashes

/*	this	is	a	multi-line	comment,	started	with	a	slash	and	an	asterisk

and	ended	with	an	asterisk	and	a	slash	*/

Use	these	when	you	like	to	remind	yourself	about	a	piece	of	code	and	what	it	does,
or	to	provide	references	for	the	future	you.	After	not	working	on	code	for	a	long
period	of	time,	comments	can	really	help	you	remember	why	you	wrote	what	you
wrote.

Variables
Often	when	coding,	we	want	to	save	the	state	of	something.	Perhaps	we	want	to
remember	that	the	current	color	of	our	background	is	red,	or	the	calculation	we	just
performed	totaled	33.	JavaScript,	like	most	languages,	has	variables:	a	place	to	store
information.	To	create	one,	you	simply	declare	it	with	the	var	keyword,	name	it,	and
then	set	it	to	equal	to	something.	You	can	also	declare	a	variable	without	explicitly
setting	its	value.	If	you	do	this,	the	variable	will	be	set	to	undefined,	a	special	value
in	JavaScript	that	simply	means	that	this	variable	has	not	been	set	to	anything.

var	twoPlusThree	=	5;

var	twoPlusTwo	=	2	+	2;

var	notYetDefined;

Here	I	declared	three	variables.	The	first,	twoPlusThree,	is	set	to	the	value	5.
The	second,	twoPlusTwo,	is	set	to	be	the	result	of	2+2.	Here	you	meet	one	of
JavaScript’s	many	operators,	+.	These	operators	perform	operations	on	values.	Most	of
them	are	obvious.	Along	with	+	(addition),	there’s	-	(subtraction),	/	(division),	*
(multiplication),	and	many	more.	You’ll	meet	more	throughout	the	book,	so	don’t
worry	too	much	about	them	now.	The	third	variable,	notYetDefined,	does	not
have	a	value	and	is	set	to	undefined,	because	I	declared	a	variable	(that	is,	I	created
a	new	variable)	but	did	not	set	a	value.

Variables	can	contain	letters,	digits,	and	underscores.	They	cannot	start	with	a
number.	So	the	variable	name	0abc	is	not	valid,	whereas	abc0	is.	Typically,	most
developers	do	not	use	digits	in	variable	names,	and	either	stick	to	camelCase	or	the
underscore	notation.

	Note			Notice	my	naming	convention	for	variables.	I’m	using	what’s	known	as	camelCase.	The	first	word	in
the	variable	name	should	start	with	a	lowercase	letter	but	then	every	other	word	in	the	name	should	start	with	a
capital	letter.	I’ll	be	using	this	throughout	the	book.	There	are	other	popular	naming	conventions,	most	notably
the_underscore_method.	This	keeps	all	words	in	lowercase	and	separates	them	with	underscores.	This	is	more
popular	in	other	languages.	The	majority	of	the	JavaScript	community	uses	camelCase.

Of	course,	once	you	set	a	variable	to	a	value,	it	doesn’t	mean	you	can’t	change	the
value.	All	variables	can	have	their	values	changed.	It’s	done	very	similarly	to	the	way

19



you	declare	a	variable,	with	the	only	difference	being	the	missing	var	keyword	at	the
beginning.	That’s	only	needed	when	you	declare	a	variable.

var	totalCost	=	5;

totalCost	=	5	+	3;

Here	you	see	I’ve	set	the	totalCost	to	5,	and	then	updated	it	again	to	be	5	+	3
(which	I	could	just	write	as	8,	obviously).

Types

Before	continuing,	you	will	notice	that	so	far	I’ve	set	all	the	variables	as	nondecimal
numbers.	In	JavaScript	(and	all	programming	languages),	there	is	the	notion	of	types.
There	are	a	number	of	types	that	a	variable	can	be.	The	most	common	are	the	number
type	and	the	string	type.	There’s	also	the	Boolean	type,	which	can	only	be	set	to	true
or	false.	When	working	with	JavaScript,	you	usually	won’t	have	to	worry	too	much
about	types.	Even	if	a	variable	is	declared	with	an	integer	value	(e.g.,	5),	it	can	then	be
updated	to	be	a	string	value,	as	follows:

var	testVariable	=	5;

testVariable	=	"Jack";

You	can	see	here	I’ve	changed	the	type	of	testVariable	from	an	integer	to
string,	and	JavaScript	doesn’t	complain	at	all.	Along	with	strings,	numbers,	and
Booleans,	the	two	other	types	you	need	to	concern	yourself	with	(for	now)	are	arrays
and	objects.	I	will	cover	both	in	more	detail	very	shortly,	but	for	now,	just	know	that
an	array	is	essentially	a	list	of	values.	These	values	can	be	of	any	type,	and	not	all
values	within	an	array	have	to	be	the	same	type.	You	can	create	an	array	by	listing
values	between	square	braces,	like	so:

var	squares	=	[1,	4,	9,	16,	25];

		

var	mixed	=	[1,	"Jack",	5,	true,	6.5,	"Franklin"];

For	now,	that’s	all	you	need	to	know	about	arrays.	I	will	cover	them	in	more	detail
before	this	chapter	is	over.

The	other	type,	object,	is	more	easily	explained	with	an	example.	Let’s	say	you
have	the	concept	of	a	car	in	your	application.	This	car	has	a	certain	number	of	wheels
and	seats,	is	a	certain	color,	and	has	a	maximum	speed.	You	could	model	this	car	with
four	separate	variables:

var	carWheelCount	=	4;

var	carColour	=	"red";

var	carSeatCount	=	5;

var	carMaximumSpeed	=	99;

It	would	be	easier	if	you	could	have	just	one	variable—car—that	contained	all	this

20


